Unlock the Power of Rational Numbers with Free PDF Downloads Of NCERT Solutions for Class 7 Maths Chapter 9, "Rational Numbers," and embark on a journey to strengthen your math skills. Our expert educators have meticulously prepared these exercises to assist students in their exam preparation, enabling them to secure good marks in mathematics. By practicing NCERT Solutions for Class 7 Maths, you can build a strong foundation for mathematical success.
The NCERT Solutions for Class 7 Maths Chapter 9 - Rational Numbers are tailored to help the students master the concepts that are key to success in their classrooms. The solutions given in the PDF are developed by experts and correlate with the CBSE syllabus of 2023-2024. These solutions provide thorough explanations with a step-by-step approach to solving problems. Students can easily get a hold of the subject and learn the basics with a deeper understanding. Additionally, they can practice better, be confident, and perform well in their examinations with the support of this PDF.
Download PDF
Students can access the NCERT Solutions for Class 7 Maths Chapter 9 - Rational Numbers. Curated by experts according to the CBSE syllabus for 2023–2024, these step-by-step solutions make Maths much easier to understand and learn for the students. These solutions can be used in practice by students to attain skills in solving problems, reinforce important learning objectives, and be well-prepared for tests.
The points P, Q, R, S, T, U, A and B on the number line are such that, TR = RS = SU and AP = PQ = QB. Name the rational numbers represented by P, Q, R and S.
By observing the figure, we can say that,
The distance between A and B = 1 unit
And it is divided into 3 equal parts = AP = PQ = QB = 1/3
P = 2 + (1/3)
= (6 + 1)/ 3
= 7/3
Q = 2 + (2/3)
= (6 + 2)/ 3
= 8/3
Similarly,
The distance between U and T = 1 unit
And it is divided into 3 equal parts = TR = RS = SU = 1/3
R = – 1 – (1/3)
= (- 3 – 1)/ 3
= – 4/3
S = – 1 – (2/3)
= – 3 – 2)/ 3
= – 5/3
Write four more rational numbers in each of the following patterns:
(i) -3/5, -6/10, -9/15, -12/20, …..
(ii) -1/4, -2/8, -3/12, …..
(iii) -1/6, 2/-12, 3/-18, 4/-24 …..
(iv) -2/3, 2/-3, 4/-6, 6/-9 …..
(i) In the above question, we can observe that the numerator and denominator are multiples of 3 and 5.
= (-3 × 1)/ (5 × 1), (-3 × 2)/ (5 × 2), (-3 × 3)/ (5 × 3), (-3 × 4)/ (5 × 4)
Then, the next four rational numbers in this pattern are,
= (-3 × 5)/ (5 × 5), (-3 × 6)/ (5 × 6), (-3 × 7)/ (5 × 7), (-3 × 8)/ (5 × 8)
= -15/25, -18/30, -21/35, -24/40 ….
(ii) In the above question, we can observe that the numerator and denominator are multiples of 1 and 4.
= (-1 × 1)/ (4 × 1), (-1 × 2)/ (4 × 2), (-1 × 3)/ (1 × 3)
Then, the next four rational numbers in this pattern are,
= (-1 × 4)/ (4 × 4), (-1 × 5)/ (4 × 5), (-1 × 6)/ (4 × 6), (-1 × 7)/ (4 × 7)
= -4/16, -5/20, -6/24, -7/28 ….
(iii) In the above question, we can observe that the numerator and denominator are multiples of 1 and 6.
= (-1 × 1)/ (6 × 1), (1 × 2)/ (-6 × 2), (1 × 3)/ (-6 × 3), (1 × 4)/ (-6 × 4)
Then, the next four rational numbers in this pattern are,
= (1 × 5)/ (-6 × 5), (1 × 6)/ (-6 × 6), (1 × 7)/ (-6 × 7), (1 × 8)/ (-6 × 8)
= 5/-30, 6/-36, 7/-42, 8/-48 ….
(iv) In the above question, we can observe that the numerator and denominator are the multiples of 2 and 3.
= (-2 × 1)/ (3 × 1), (2 × 1)/ (-3 × 1), (2 × 2)/ (-3 × 2), (2 × 3)/ (-3 × 3)
Then, the next four rational numbers in this pattern are,
= (2 × 4)/ (-3 × 4), (2 × 5)/ (-3 × 5), (2 × 6)/ (-3 × 6), (2 × 7)/ (-3 × 7)
= 8/-12, 10/-15, 12/-18, 14/-21 ….
List five rational numbers between:
(i) -1 and 0
(ii) -2 and -1
(iii) -4/5 and -2/3
(iv) -1/2 and 2/3
(i) The five rational numbers between -1 and 0 are,
-1< (-2/3) < (-3/4) < (-4/5) < (-5/6) < (-6/7) < 0
(ii) The five rational numbers between -2 and -1 are,
-2 < (-8/7) < (-9/8) < (-10/9) < (-11/10) < (-12/11) < -1
(iii) The five rational numbers between -4/5 and -2/3 are,
-4/5 < (-13/12) < (-14/13) < (-15/14) < (-16/15) < (-17/16) < -2/3
(iv) The five rational numbers between -1/2 and 2/3 are,
-1/2 < (-1/6) < (0) < (1/3) < (1/2) < (20/36) < 2/3
Give four rational numbers equivalent to:
(i) -2/7
(ii) 5/-3
(iii) 4/9
(i) The four rational numbers equivalent to -2/7 are,
= (-2 × 2)/ (7 × 2), (-2 × 3)/ (7 × 3), (-2 × 4)/ (7 × 4), (-2 × 5)/ (7× 5)
= -4/14, -6/21, -8/28, -10/35
(ii) The four rational numbers equivalent to 5/-3 are,
= (5 × 2)/ (-3 × 2), (5 × 3)/ (-3 × 3), (5 × 4)/ (-3 × 4), (5 × 5)/ (-3× 5)
= 10/-6, 15/-9, 20/-12, 25/-15
(iii) The four rational numbers equivalent to 5/-3 are,
= (4 × 2)/ (9 × 2), (4 × 3)/ (9 × 3), (4 × 4)/ (9 × 4), (4 × 5)/ (9× 5)
= 8/18, 12/27, 16/36, 20/45
Draw the number line and represent the following rational numbers on it:
(i) ¾
(ii) -5/8
(iii) -7/4
(iv) 7/8
(i) We know that 3/4 is greater than 0 and less than 1.
∴ it lies between 0 and 1. It can be represented on the number line as,
(ii) We know that -5/8 is less than 0 and greater than -1.
∴ it lies between 0 and -1. It can be represented on the number line as,
(iii) Now, the above question can be written as,
= (-7/4) =
We know that (-7/4) is less than -1 and greater than -2.
∴ it lies between -1 and -2. It can be represented on the number line as,
(iv) We know that 7/8 is greater than 0 and less than 1.
∴ it lies between 0 and 1. It can be represented on the number line as,
Which of the following pairs represents the same rational number?
(i) (-7/21) and (3/9)
(ii) (-16/20) and (20/-25)
(iii) (-2/-3) and (2/3)
(iv) (-3/5) and (-12/20)
(v) (8/-5) and (-24/15)
(vi) (1/3) and (-1/9)
(vii) (-5/-9) and (5/-9)
(i) We have to check if the given pair represents the same rational number.
Then,
-7/21 = 3/9
-1/3 = 1/3
∵ -1/3 ≠ 1/3
∴ -7/21 ≠ 3/9
So, the given pair does not represent the same rational number.
(ii) We have to check if the given pair represents the same rational number.
Then,
-16/20 = 20/-25
-4/5 = 4/-5
∵ -4/5 = -4/5
∴ -16/20 = 20/-25
So, the given pair represents the same rational number.
(iii) We have to check if the given pair represents the same rational number.
Then,
-2/-3 = 2/3
2/3= 2/3
∵ 2/3 = 2/3
∴ -2/-3 = 2/3
So, the given pair represents the same rational number.
(iv) We have to check if the given pair represents the same rational number.
Then,
-3/5 = – 12/20
-3/5 = -3/5
∵ -3/5 = -3/5
∴ -3/5= -12/20
So, the given pair represents the same rational number.
(v) We have to check if the given pair represents the same rational number.
Then,
8/-5 = -24/15
8/-5 = -8/5
∵ -8/5 = -8/5
∴ 8/-5 = -24/15
So, the given pair represents the same rational number.
(vi) We have to check if the given pair represents the same rational number.
Then,
1/3 = -1/9
∵ 1/3 ≠ -1/9
∴ 1/3 ≠ -1/9
So, the given pair does not represent the same rational number.
(vii) We have to check if the given pair represents the same rational number.
Then,
-5/-9 = 5/-9
∵ 5/9 ≠ -5/9
∴ -5/-9 ≠ 5/-9
So, the given pair does not represent the same rational number.
Rewrite the following rational numbers in the simplest form:
(i) -8/6
(ii) 25/45
(iii) -44/72
(iv) -8/10
(i) The given rational numbers can be simplified further,
Then,
= -4/3 … [∵ Divide both numerator and denominator by 2]
(ii) The given rational numbers can be simplified further,
Then,
= 5/9 … [∵ Divide both numerator and denominator by 5]
(iii) The given rational numbers can be simplified further,
Then,
= -11/18 … [∵ Divide both numerator and denominator by 4]
(iv) The given rational numbers can be simplified further,
Then,
= -4/5 … [∵ Divide both numerator and denominator by 2]
Fill in the boxes with the correct symbol out of >, <, and =.
(i) -5/7 [ ] 2/3
(ii) -4/5 [ ] -5/7
(iii) -7/8 [ ] 14/-16
(iv) -8/5 [ ] -7/4
(v) 1/-3 [ ] -1/4
(vi) 5/-11 [ ] -5/11
(vii) 0 [ ] -7/6
(i) The LCM of the denominators 7 and 3 is 21
∴ (-5/7) = [(-5 × 3)/ (7 × 3)] = (-15/21)
And (2/3) = [(2 × 7)/ (3 × 7)] = (14/21)
Now,
-15 < 14
So, (-15/21) < (14/21)
Hence, -5/7 [<] 2/3
(ii) The LCM of the denominators 5 and 7 is 35
∴ (-4/5) = [(-4 × 7)/ (5 × 7)] = (-28/35)
And (-5/7) = [(-5 × 5)/ (7 × 5)] = (-25/35)
Now,
-28 < -25
So, (-28/35) < (- 25/35)
Hence, -4/5 [<] -5/7
(iii) 14/-16 can be simplified further,
Then,
7/-8 … [∵ Divide both numerator and denominator by 2]
So, (-7/8) = (-7/8)
Hence, -7/8 [=] 14/-16
(iv) The LCM of the denominators 5 and 4 is 20
∴ (-8/5) = [(-8 × 4)/ (5 × 4)] = (-32/20)
And (-7/4) = [(-7 × 5)/ (4 × 5)] = (-35/20)
Now,
-32 > – 35
So, (-32/20) > (- 35/20)
Hence, -8/5 [>] -7/4
(v) The LCM of the denominators 3 and 4 is 12
∴ (-1/3) = [(-1 × 4)/ (3 × 4)] = (-4/12)
And (-1/4) = [(-1 × 3)/ (4 × 3)] = (-3/12)
Now,
-4 < – 3
So, (-4/12) < (- 3/12)
Hence, 1/-3 [<] -1/4
(vi) Since, (-5/11) = (-5/11)
Hence, 5/-11 [=] -5/11
(vii) Since every negative rational number is less than 0,
We get:
= 0 [>] -7/6
Which is greater in each of the following:
(i) 2/3, 5/2
(ii) -5/6, -4/3
(iii) -3/4, 2/-3
(iv) -¼, ¼
(v)
,
(i) The LCM of the denominators 3 and 2 is 6
(2/3) = [(2 × 2)/ (3 × 2)] = (4/6)
And (5/2) = [(5 × 3)/ (2 × 3)] = (15/6)
Now,
4 < 15
So, (4/6) < (15/6)
∴ 2/3 < 5/2
Hence, 5/2 is greater.
(ii) The LCM of the denominators 6 and 3 is 6
∴ (-5/6) = [(-5 × 1)/ (6 × 1)] = (-5/6)
And (-4/3) = [(-4 × 2)/ (3 × 2)] = (-12/6)
Now,
-5 > -12
So, (-5/6) > (- 12/6)
∴ -5/6 > -12/6
Hence, – 5/6 is greater.
(iii) The LCM of the denominators 4 and 3 is 12
∴ (-3/4) = [(-3 × 3)/ (4 × 3)] = (-9/12)
And (-2/3) = [(-2 × 4)/ (3 × 4)] = (-8/12)
Now,
-9 < -8
So, (-9/12) < (- 8/12)
∴ -3/4 < 2/-3
Hence, 2/-3 is greater.
(iv) The given fraction is like friction,
So, -¼ < ¼
Hence ¼ is greater,
(v) First, we have to convert mixed fractions into improper fractions,
= -23/7
= -19/5
Then,
The LCM of the denominators 7 and 5 is 35
∴ (-23/7) = [(-23 × 5)/ (7 × 5)] = (-115/35)
And (-19/5) = [(-19 × 7)/ (5 × 7)] = (-133/35)
Now,
-115 > -133
So, (-115/35) > (- 133/35)
∴
>
Hence,
is greater.
Write the following rational numbers in ascending order:
(i) -3/5, -2/5, -1/5
(ii) -1/3, -2/9, -4/3
(iii) -3/7, -3/2, -3/4
(i) The given rational numbers are in the form of like fractions,
Hence,
(-3/5)< (-2/5) < (-1/5)
(ii) To convert the given rational numbers into like fractions, we have to find the LCM,
The LCM of 3, 9, and 3 is 9
Now,
(-1/3)= [(-1 × 3)/ (3 × 9)] = (-3/9)
(-2/9)= [(-2 × 1)/ (9 × 1)] = (-2/9)
(-4/3)= [(-4 × 3)/ (3 × 3)] = (-12/9)
Clearly,
(-12/9) < (-3/9) < (-2/9)
Hence,
(-4/3) < (-1/3) < (-2/9)
(iii) To convert the given rational numbers into like fractions, we have to find LCM,
The LCM of 7, 2, and 4 is 28
Now,
(-3/7)= [(-3 × 4)/ (7 × 4)] = (-12/28)
(-3/2)= [(-3 × 14)/ (2 × 14)] = (-42/28)
(-3/4)= [(-3 × 7)/ (4 × 7)] = (-21/28)
Clearly,
(-42/28) < (-21/28) < (-12/28)
Hence,
(-3/2) < (-3/4) < (-3/7)
Find the product:
(i) (9/2) × (-7/4)
(ii) (3/10) × (-9)
(iii) (-6/5) × (9/11)
(iv) (3/7) × (-2/5)
(v) (3/11) × (2/5)
(vi) (3/-5) × (-5/3)
(i) The product of two rational numbers = (product of their numerator)/ (product of their denominator)
The above question can be written as (9/2) × (-7/4)
We have,
= (9×-7)/ (2×4)
= -63/8
(ii) The product of two rational numbers = (product of their numerator)/ (product of their denominator)
The above question can be written as (3/10) × (-9/1)
We have,
= (3×-9)/ (10×1)
= -27/10
(iii) The product of two rational numbers = (product of their numerator)/ (product of their denominator)
We have,
= (-6×9)/ (5×11)
= -54/55
(iv) The product of two rational numbers = (product of their numerator)/ (product of their denominator)
We have,
= (3×-2)/ (7×5)
= -6/35
(v) The product of two rational numbers = (product of their numerator)/ (product of their denominator)
We have,
= (3×2)/ (11×5)
= 6/55
(vi) The product of two rational numbers = (product of their numerator)/ (product of their denominator)
We have,
= (3×-5)/ (-5×3)
On simplifying,
= (1×-1)/ (-1×1)
= -1/-1
= 1
Find the sum:
(i) (5/4) + (-11/4)
(ii) (5/3) + (3/5)
(iii) (-9/10) + (22/15)
(iv) (-3/-11) + (5/9)
(v) (-8/19) + (-2/57)
(vi) -2/3 + 0
(vii) +
(i) We have:
= (5/4) – (11/4)
= [(5 – 11)/4] … [∵ denominator is same in both the rational numbers]
= (-6/4)
= -3/2 … [∵ Divide both numerator and denominator by 3]
(ii) Take the LCM of the denominators of the given rational numbers.
LCM of 3 and 5 is 15
Express each of the given rational numbers with the above LCM as the common denominator.
Now,
(5/3)= [(5×5)/ (3×5)] = (25/15)
(3/5)= [(3×3)/ (5×3)] = (9/15)
Then,
= (25/15) + (9/15) … [∵ denominator is same in both the rational numbers]
= (25 + 9)/15
= 34/15
(iii) Take the LCM of the denominators of the given rational numbers.
LCM of 10 and 15 is 30
Express each of the given rational numbers with the above LCM as the common denominator.
Now,
(-9/10)= [(-9×3)/ (10×3)] = (-27/30)
(22/15)= [(22×2)/ (15×2)] = (44/30)
Then,
= (-27/30) + (44/30) … [∵ denominator is same in both the rational numbers]
= (-27 + 44)/30
= (17/30)
(iv) We have,
= 3/11 + 5/9
Take the LCM of the denominators of the given rational numbers.
LCM of 11 and 9 is 99
Express each of the given rational numbers with the above LCM as the common denominator.
Now,
(3/11)= [(3×9)/ (11×9)] = (27/99)
(5/9)= [(5×11)/ (9×11)] = (55/99)
Then,
= (27/99) + (55/99) … [∵ denominator is same in both the rational numbers]
= (27 + 55)/99
= (82/99)
(v) We have
= -8/19 – 2/57
Take the LCM of the denominators of the given rational numbers.
LCM of 19 and 57 is 57
Express each of the given rational numbers with the above LCM as the common denominator.
Now,
(-8/19)= [(-8×3)/ (19×3)] = (-24/57)
(-2/57)= [(-2×1)/ (57×1)] = (-2/57)
Then,
= (-24/57) – (2/57) … [∵ denominator is same in both the rational numbers]
= (-24 – 2)/57
= (-26/57)
(vi) We know that any number or fraction is added to zero, the answer will be the same number or fraction.
Hence,
= -2/3 + 0
= -2/3
(vii) First, we have to convert mixed fractions into improper fractions.
== -7/3
== 23/5
We have, -7/3 + 23/5
Take the LCM of the denominators of the given rational numbers.
LCM of 3 and 5 is 15
Express each of the given rational numbers with the above LCM as the common denominator.
Now,
(-7/3)= [(-7×5)/ (3×5)] = (-35/15)
(23/5)= [(23×3)/ (15×3)] = (69/15)
Then,
= (-35/15) + (69/15) … [∵ denominator is same in both the rational numbers]
= (-35 + 69)/15
= (34/15)
Find
(i) 7/24 – 17/36
(ii) 5/63 – (-6/21)
(iii) -6/13 – (-7/15)
(iv) -3/8 – 7/11
(v) – – 6
(i) Take the LCM of the denominators of the given rational numbers.
LCM of 24 and 36 is 72
Express each of the given rational numbers with the above LCM as the common denominator.
Now,
(7/24)= [(7×3)/ (24×3)] = (21/72)
(17/36)= [(17×2)/ (36×2)] = (34/72)
Then,
= (21/72) – (34/72) … [∵ denominator is same in both the rational numbers]
= (21 – 34)/72
= (-13/72)
(ii) We can also write -6/21 = -2/7
= 5/63 – (-2/7)
We have,
= 5/63 + 2/7
Take the LCM of the denominators of the given rational numbers.
LCM of 63 and 7 is 63
Express each of the given rational numbers with the above LCM as the common denominator.
Now,
(5/63)= [(5×1)/ (63×1)] = (5/63)
(2/7)= [(2×9)/ (7×9)] = (18/63)
Then,
= (5/63) + (18/63) … [∵ denominator is same in both the rational numbers]
= (5 + 18)/63
= 23/63
(iii) We have,
= -6/13 + 7/15
LCM of 13 and 15 is 195
Express each of the given rational numbers with the above LCM as the common denominator.
Now,
(-6/13)= [(-6×15)/ (13×15)] = (-90/195)
(7/15)= [(7×13)/ (15×13)] = (91/195)
Then,
= (-90/195) + (91/195) … [∵ denominator is same in both the rational numbers]
= (-90 + 91)/195
= (1/195)
(iv) Take the LCM of the denominators of the given rational numbers.
LCM of 8 and 11 is 88
Express each of the given rational numbers with the above LCM as the common denominator.
Now,
(-3/8)= [(-3×11)/ (8×11)] = (-33/88)
(7/11)= [(7×8)/ (11×8)] = (56/88)
Then,
= (-33/88) – (56/88) … [∵ denominator is same in both the rational numbers]
= (-33 – 56)/88
= (-89/88)
(v) First, we have to convert the mixed fraction into an improper fraction,
–
= -19/9
We have, -19/9 – 6
Take the LCM of the denominators of the given rational numbers.
LCM of 9 and 1 is 9
Express each of the given rational numbers with the above LCM as the common denominator.
Now,
(-19/9)= [(-19×1)/ (9×1)] = (-19/9)
(6/1)= [(6×9)/ (1×9)] = (54/9)
Then,
= (-19/9) – (54/9) … [∵ denominator is same in both the rational numbers]
= (-19 – 54)/9
= (-73/9)
Find the value of:
(i) (-4) ÷ (2/3)
(ii) (-3/5) ÷ 2
(iii) (-4/5) ÷ (-3)
(iv) (-1/8) ÷ 3/4
(v) (-2/13) ÷ 1/7
(vi) (-7/12) ÷ (-2/13)
(vii) (3/13) ÷ (-4/65)
(i) We have,
= (-4/1) × (3/2) … [∵ reciprocal of (2/3) is (3/2)]
The product of two rational numbers = (product of their numerator)/ (product of their denominator)
= (-4×3) / (1×2)
= (-2×3) / (1×1)
= -6
(ii) We have,
= (-3/5) × (1/2) … [∵ reciprocal of (2/1) is (1/2)]
The product of two rational numbers = (product of their numerator)/ (product of their denominator)
= (-3×1) / (5×2)
= -3/10
(iii) We have,
= (-4/5) × (1/-3) … [∵ reciprocal of (-3) is (1/-3)]
The product of two rational numbers = (product of their numerator)/ (product of their denominator)
= (-4× (1)) / (5× (-3))
= -4/-15
= 4/15
(iv) We have,
= (-1/8) × (4/3) … [∵ reciprocal of (3/4) is (4/3)]
The product of two rational numbers = (product of their numerator)/ (product of their denominator)
= (-1×4) / (8×3)
= (-1×1) / (2×3)
= -1/6
(v) We have,
= (-2/13) × (7/1) … [∵ reciprocal of (1/7) is (7/1)]
The product of two rational numbers = (product of their numerator)/ (product of their denominator)
= (-2×7) / (13×1)
= -14/13
(vii) We have,
= (-7/12) × (13/-2) … [∵ reciprocal of (-2/13) is (13/-2)]
The product of two rational numbers = (product of their numerator)/ (product of their denominator)
= (-7× 13) / (12× (-2))
= -91/-24
= 91/24
(vii) We have,
= (3/13) × (65/-4) … [∵ reciprocal of (-4/65) is (65/-4)]
The product of two rational numbers = (product of their numerator)/ (product of their denominator)
= (3×65) / (13× (-4))
= 195/-52
= -15/4
Admissions Open for 2025-26
The NCERT solution for Class 7 Chapter 9: Rational Numbers is important as it provides a structured approach to learning, ensuring that students develop a strong understanding of foundational concepts early in their academic journey. By mastering these basics, students can build confidence and readiness for tackling more difficult concepts in their further education.
Yes, the NCERT solution for Class 7 Chapter 9: Rational Numbers is quite useful for students in preparing for their exams. The solutions are simple, clear, and concise allowing students to understand them better. Rational Numbersally, they can solve the practice questions and exercises that allow them to get exam-ready in no time.
You can get all the NCERT solutions for Class 7 Maths Chapter 9 from the official website of the Orchids International School. These solutions are tailored by subject matter experts and are very easy to understand.
Yes, students must practice all the questions provided in the NCERT solution for Class 7 Maths Chapter 9: Rational Numbers as it will help them gain a comprehensive understanding of the concept, identify their weak areas, and strengthen their preparation.
Students can utilize the NCERT solution for Class 7 Maths Chapter 9 effectively by practicing the solutions regularly. Solve the exercises and practice questions given in the solution.