NCERT Solutions for Class 11 Physics Chapter 13 Oscillation

NCERT solutions for class 11 physics chapter 13, by Orchids International School., explains many concepts related to periodic motion and oscillatory systems in very detailed as well as simple ways. It was here that the students were taught about the basic SHM, the dynamics of oscillations, and the energy related to the system. These include angular frequency, amplitude, restoring force, and equations that govern SHM.

Access Answers to NCERT Solutions for Class 11 Physics Chapter 13 Oscillation

Students can access the NCERT Solutions for Class 11 Physics Chapter 13 Oscillation. Curated by experts according to the CBSE syllabus for 2023–2024, these step-by-step solutions make Physics much easier to understand and learn for the students. These solutions can be used in practice by students to attain skills in solving problems, reinforce important learning objectives, and be well-prepared for tests.

Oscillations

Question 1 :

A mass attached to a spring is free to oscillate, with angular velocity w, in a horizontal plane without friction or damping. It is pulled to a distance x0 and pushed towards the centre with a velocity v0 at time t = 0. Determine the amplitude of the resulting oscillations in terms of the parameters w, x0 and v0.

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q25


Question 2 :

 Which of the following examples represent (nearly) simple harmonic motion and which represent
periodic but not simple harmonic motion?
(a) the rotations of earth about its axis.
(b) motion of an oscillating mercury column in a U-tube.
(c) motion of a ball bearing inside a smooth curved bowl, when released from a point slightly above the lowermost point.
(d) general vibrations of a polyatomic molecule about its equilibrium position.

Answer :

(a) Since the rotation of earth is not to and fro motion about a fixed point, thus it is periodic but not S.H.M.
(b) It is S.H.M.
(c) It is S.H.M.
(d) General vibrations of a polyatomic molecule about its equilibrium position is periodic but non SHM. In fact, it is a result of superposition of SHMs executed by individual vibrations of atoms of the molecule.

 


Question 3 :

Which of the following examples represent periodic motion?
(a) A swimmer completing one (return) trip from one bank of a river to the other and back.
(b) A freely suspended bar magnet displaced from its N-S direction and released.
(c) A hydrogen molecule rotating about its centre of mass.
(d) An arrow released from a bow.

Answer :

 (a) It is not a periodic motion. Though the motion of a swimmer is to and fro but will not have a definite period.
(b) Since a freely suspended magnet if once displaced from N-S direction and released, it oscillates about this position, it is a periodic motion.
(c) The rotating motion of a hydrogen molecule about its centre of mass is periodic.
(d) Motion of an arrow released from a bow is non-periodic.

 


Question 4 :

 Fig. depicts four x-t plots for linear motion of a particle. Which of ike plots represent periodic motion? What is the period of motion (in case of periodic motion)?

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q3

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q3.1

Answer :

Figure (b) and (d) represent periodic motions and the time period of each of these is 2 seconds, (a) and (c) are non-periodic motions.

 


Question 5 :

 Which of the following function of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of periodic motion (to is any positive constant).
(a) sin wt – cos wt (b) sin2 wt (c) 3 cos -2 cos (π/4-2 wt) (d) cos wt + cos 3 wt + cos 5 wt
(e) exp (- w2t2) (f) 1 + wt + w2t2.

Answer :

 The function will represent a periodic motion, if it is identically repeated after a fixed interval of time and will represent S.H.M if it can be written uniquely in the form of a cos
NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q4
(e) e-w2t2 . It is an exponential function which never repeats itself. Therefore it represents non-periodic motion.
(f) 1 + wt + w2t2 also represents non periodic motion.

 


Question 6 :

A particle is in linear simple harmonic motion between two points, A and B, 10 cm apart. Take the direction from A to B as the positive direction and give the signs of velocity, acceleration and force on the particle when it is
(a) at the end A,
(b) at the end B,
(c) at the mid-point of AB going towards A,
(d) at 2 cm away from B going towards A,
(e) at 3 cm away from A going towards B, and (f)  at 4 cm away from B going towards A.

Answer :

 In the fig. (given below), the points A and B, 10 cm apart, are the extreme positions of the particle in SHM, and the point O is the mean position. The direction from A to B is positive, as indicated.

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q5

(a) At the end A, i.e., extreme position, velocity is zero, acceleration and force are directed towards O and are positive.
(b) At the end B, i.e., second extreme position, velocity is zero whereas the acceleration and force are directed towards the point O and are negative.

 

(c) At the mid point O, while going towards A, velocity is negative and maximum. The acceleration and force both are zero.

(d) At 2 cm away from B, that is, at C and going towards A: v is negative; acceleration and F, being directed towards O, are also negative.

(e) At 3 cm away from A, that is, at D and going towards B: v is positive; acceleration and F, being directed towards O, are also positive.

(f)  At a distance of 4 cm away from A and going towards A, velocity is directed along BA, therefore, it is positive. Since acceleration and force are directed towards OB, both of them are positive.

 


Question 7 :

 Which of the following relationships between the acceleration a and the displacement x of a particle involve simple harmonic motion?
(a) a = 0.7x (b) a = – 200 x2
(c) a = – 10x (d) a = 100 x3

Answer :

Only (c) i.e., a = – 10x represents SHM. This is because acceleration is proportional and opposite to displacement (x).

 


Question 8 :

The motion of a particle executing simple harmonic motion is described by the displacement function. x(t) = A cos (wt +Ф ).If the initial (t = 0) position of the particle is 1 cm and its initial velocity is w cm/s, what are its amplitude and initial phase angle? The angular frequency of the particle is π s-1. If instead of the cosine function, we choose the sine function to describe the SHM: x = B sin (wt + α), what are the amplitude and initial phase of the particle with the above initial conditions?

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q7


Question 9 :

 A spring balance has a scale that reads from 0 to 50 kg. The length of the scale is 20 cm. A body suspended from this balance, when displaced and released, oscillates with a period of 0.6 s. What is the weight of the body?

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q8

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q8.1


Question 10 :

 A spring having with a spring constant 1200 Nm-1 is mounted on a horizontal table as shown in Fig. A mass of 3 kg is attached to the free end of the spring. The mass is then pulled sideways to a distance of 2.0 cm and released. Determine (i) the frequency of oscillations, (ii) maximum acceleration of the mass, and (iii) the maximum speed of the mass.

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q9

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q9.1

 


Question 11 :

 In Exercise 9, let us take the position of mass when the spring is unstreched as x = 0, and the direction from left to right as the positive direction of x – axis. Give x as a function of time t for the oscillating mass if at the moment we start the stopwatch (t = 0), the mass is (a)at the mean position,(b)at the maximum stretched position, and (c)at the maximum compressed position.In what way do these functions for SHM differ from each other, in frequency, in amplitude or the initial phase?

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q10

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q10.1

Note: The functions neither differ in amplitude nor in frequency . They differ only in initial phase.

 


Question 12 :

The following figures correspond to two circular motions. The radius of the circle, the period of revolution, the initial position, and the sense of revolution (i.e., clockwise or anticlockwise) are indicated on each figure.
NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q11
Obtain the corresponding simple harmonic motions of the x-projection of the radius vector of the revolving particle P in each case.

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q11.1

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q11.2


Question 13 :

Plot the corresponding reference circle for each of the following simple harmonic motions. Indicate the initial (t = 0) position of the particle, the radius of the circle, and the angular speed of the rotating particle. For simplicity, the sense of rotation may be fixed to be anti-clockwise in every case:
(x is in cm and t is in s)
(a) x = – 2 sin (3t + π /3)
(b) x = cos (π /6 – t)

(c) x = 3 sin (2πt + π /4)
(d) x = 2 cos π t.

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q12

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q12.1

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q12.2


Question 14 :

 Figure (a) shows a spring of force constant k clamped rigidly at one end and a mass m attached to its free end. A force F applied at the free end stretches the spring. Figure (b) shows the same spring with both ends free and attached to a mass m at either end. Each end of the spring in Figure – (b) is stretched by the same force F.
NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q13
(a) What is the maximum extension of the spring in the two cases?
(b) If the mass in Fig. (a) and the two masses in Fig. (b) are released free, what is the period of oscillation in each case?

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q13.1

 


Question 15 :

 The piston in the cylinder head of a locomotive has a stroke (twice the amplitude) of 1.0 m. If the piston moves with simple harmonic motion with an angular frequency of 200 rev/min, what its maximum speed?

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q14

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q14.1

 


Question 16 :

The acceleration due to gravity on the surface of moon is 1.7 ms-2. What is the time period of a simple pendulum on the surface of moon if its time-period on the surface of Earth is 3.5 s? (g on the surface of Earth is 9.8 ms-2 .)

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q15

 


Question 17 :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q16

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q16.1

(c) The wristwatch uses an electronic system or spring system to give the time, which does not change with acceleration due to gravity. Therefore, watch gives the correct time.
(d) During free fall of the cabin, the acceleration due to gravity is zero. Therefore, the frequency of oscillations is also zero i.e., the pendulum will not vibrate at all.

 


Question 18 :

 A simple pendulum of length l and having a bob of mass M is suspended in a car. The car is moving on a circular track of radius R with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium position, what will be its time period?

Answer :

: In this case, the bob of the pendulum is under the action of two accelerations.
NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q17

 


Question 19 :

A cylindrical piece of cork of density of base area A and height h floats in a liquid of density ρ1 . The cork is depressed slightly and then released. Show that the cork oscillates up and down simple harmonically with a period

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q18

where ρ is the density of cork. (Ignore damping due to viscosity of the liquid).

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q18.1


Question 20 :

One end of a U-tube containing mercury is connected to a suction pump and the other end to the atmosphere.

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q19

A small pressure difference is maintained between the two columns. Show that, when the suction pump is removed, the column of mercury in the U-tube executes simple harmonic motion.

Answer :

The suction pump creates the pressure difference, thus mercury rises in one limb of the U-tube. When it is removed, a net force acts on the liquid column due to the difference in levels of mercury in the two limbs and hence the liquid column executes S.H.M. which can be expressed as:
Consider the mercury contained in a vertical U-tube upto the level P and Q in its two limbs.
Let P = density of the mercury.
L = Total length of the mercury column in both the limbs.
A = internal cross-sectional area of U-tube. m = mass of mercury in U-tube = LAP.
Assume, the mercury be depressed in left limb to F by a small distance y, then it rises by the same amount in the right limb to position Q’.
.’. Difference in levels in the two limbs = P’ Q’ = 2y.
:. Volume of mercury contained in the column of length 2y = A X 2y
.•. m – A x 2y x ρ.
If W = weight of liquid contained in the column of length 2y.
Then W = mg = A x 2y x ρ x g
This weight produces the restoring force (F) which tends to bring back the mercury to its equilibrium position.
NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q19.1

 


Question 21 :

An air chamber of volume V has a neck area of cross-section into which a ball of mass m just fits and can move up and down without any friction (Fig.). Shaw that when the ball is pressed down a little and released, it executes SHM. Obtain an expression for the time period of oscillations assuming pressure-volume variations of air to be isothermal.

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q20

Answer :

 Consider an air chamber of volume V with a long neck of uniform area of cross-section A, and a frictionless ball of mass m fitted smoothly in the neck at position C, Fig. The pressure of air below the ball inside the chamber is equal to the atmospheric pressure.
Increase the pressure on the ball by a little amount p, so that the ball is depressed to position D, where CD = y.
There will be decrease in volume and hence increase in pressure of air inside the chamber. The decrease in volume of the air inside the chamber, ΔV = Ay
NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q20.1

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q20.2
Note. If the ball oscillates in the neck of chamber under isothermal conditions, thru E = P = picture of air inside the chamber, when ball is at equilibrium position. If the ball oscillate in the neck of chamber under adiabatic conditions, then E = gP. where g = Cp/Cv.

 


Question 22 :

 You are riding an automobile of mass 3000 kg. Assuming that you are examining the oscillation characteristics of its suspension system. The suspension sags 15 cm when the entire automobile is placed on it. Also, the amplitude of oscillation decreases by 50% during one complete oscillation. Estimate the values of (a) the spring constant k and (b) the damping constant b for the spring and shock absorber system of one wheel, assuming that each wheel supports 750 kg. g = 10 m/s2.

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q21


Question 23 :

  Show that for a particle in linear SHM the average kinetic energy over a period of oscillation equals the average potential energy over the same period.

Answer :

 Let the particle executing SHM starts oscillating from its mean position. Then displacement equation is
NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q22

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q22.1

 


Question 24 :

A circular disc, of mass 10 kg, is suspended by a wire attached to its centre. The wire is twisted by rotating the disc and released. The period of torsional oscillations of found to be 1.5 s. The radius of the disc is 15 cm. Determine the torsional spring constant of the wire. (Torsional spring constant) a is defined by the relation J = – αθ, where J is the restoring couple and θ the angle of twist).

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q23

 


Question 25 :

 A body describes simple harmonic motion with an amplitude of 5 cm and a period of 0.2 s. Find the acceleration and velocity of the body when the displacement is (a) 5 cm (b) 3 cm (c) 0 cm

Answer :

NCERT Solutions for Class 11 Physics Chapter 14 Oscillations Q24

 


Enquire Now